Exam Seat No:\_\_\_\_\_

# C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name : Advanced Functional AnalysisSubject Code :5SC04AFA1Semester : 4Date : 15/04/2019

Branch: M.Sc. (Mathematics) Time : 02:30 To 05:30 Marks : 70

## **Instructions:**

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

## SECTION – I

## Q-1 Attempt the Following questions

- **a.** Let  $\{x, y\}$  be an orthonormal set in a Hilbert space *H*. Then find the value of  $||x + y||^2$ .
- **b.** Let *X* be an inner product over  $\mathbb{C}$ . If  $x, y \in X$ , then find the value of  $\langle x + y, x + y x y, x y + ix + iy, x + iy i(x iy, x iy)$ .
- **c.** Let *H* be a Hilbert space, and let  $T \in BL(H)$  be one one. Define  $\langle \cdot, \cdot \rangle_T$  by  $\langle x, y \rangle_T = \langle Tx, Ty \rangle$  for all  $x, y \in H$ . Show that  $\langle \cdot, \cdot \rangle_T$  is an inner product on *H*.
- **d.** Let *X* be an inner product space, and let  $x_0 \in X$ . Define *f* on *X* by  $f(x) = \langle x, x_0 \rangle$  for all  $x \in X$ . Show that *f* is a linear map.
- e. Give an example of a weakly convergent sequence in some Hilbert space which is not convergent.
- **f.** Define best approximation.
- **g.** Give an example of a normed space which is not separable.

## Q-2 Attempt all questions

- (a) Let X be an inner product space, and let E be an orthonormal subset of X. If  $x \in X$ , then show that the set  $E_x = \{y \in E : \langle x, y \rangle \neq 0\}$  is countable.
- (b) If *H* is an infinite dimensional Hilbert space with a countable orthonormal basis, then prove that *H* is isometrically isomorphic to  $\ell^2$ .

## OR

## Q-2 Attempt all questions

- (a) Show that the normed linear space  $(\ell^p, \|\cdot\|_p)$  is an inner product space if and only if p = 2.
- (b) Let X be an inner product space, and  $x, y \in X$ . Show that  $|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$ . Also, prove that equality holds if and only if x and y are linearly dependent.

## Q-3 Attempt all questions

(a) Let *H* be a Hilbert space. Show that a linear map  $f: H \to \mathbb{C}$  is continuous if and only if there is unique  $y \in H$  such that  $f(x) = \langle x, y \rangle$  for all  $x \in H$ .



(07)

(14)

(14)

(14)

(b) Let X be an inner product space, Y be a subspace of X and  $x \in X$ . Prove that  $y \in Y$  is a best approximation from Y to x if and only if  $(x - y) \perp Y$ .

#### OR

- **Q-3** (a) Let *H* be a Hilbert space, and let *Y* be a closed subspace of *H*. If *g* is a continuous linear functional on *Y*, then prove that there is unique continuous linear functional *f* on *H* such that  $f_{|Y} = g$  and ||f|| = ||g||.
  - (b) If  $E \neq \emptyset$  is a closed convex subset of a Hilbert space *H*, then show that *E* contains a unique element of minimum norm.

## **SECTION – II**

## Q-4 Attempt the Following questions

- **a.** If  $T \in BL(H)$ , then show that ker  $T = \text{ker}(T^*T)$ .
- **b.** Let  $T \in BL(H)$ . Show that  $\lambda \in \sigma(T)$  if and only if  $\overline{\lambda} \in \sigma(T^*)$ .
- c. If *H* is a complex Hilbert space and if  $T \in BL(H)$ , then show that there exist selfadjoint bounded linear maps *A*, *B* such that T = A + iB.
- **d.** If  $T \in BL(H)$  is compact and  $S \in BL(H)$ , then show that *TS* is compact.
- e. Let  $T: \ell^2 \to \ell^2$  be T(x(1), x(2), ...) = (x(2), x(3), ...). Show that T is not an isometry.
- **f.** Let  $T \in BL(H)$  be normal. If  $\lambda$  and  $\mu$  are distinct eigen values of T, then show that the corresponding eigen vectors are orthogonal.
- **g.** If  $T \in BL(H)$  is bounded below, then show that it is one one.

## Q-5 Attempt all questions

- (a) Let *H* be a Hilbert space. If  $T \in BL(H)$  is self-adjoint, then show that  $||T|| = \sup\{|\langle Tx, x \rangle| : ||x|| \le 1\}$ .
- (b) Let *H* be a Hilbert space. If  $T \in BL(H)$ , then show that there is unique  $T^* \in BL(H)$  such that  $\langle x, T^*y \rangle = \langle Tx, y \rangle$  for all  $x, y \in H$  and  $||T^*|| = ||T||$ .

#### OR

- **Q-5** (a) Let *H* be a Hilbert space, and let  $T \in BL(H)$  be onto. Prove that  $T^*$  is bounded below.
  - (b) Let *H* be a Hilbert space and  $T \in BL(H)$ . Prove that *T* is unitary if and only if *T* is an onto isometry.

## Q-6 Attempt all questions

- (a) Let *H* be a Hilbert space, and let  $T \in BL(H)$  be compact. If  $0 \neq \lambda \in \sigma_a(T)$ , then show that  $\lambda \in \sigma_e(T)$  and ker $(T \lambda I)$  is finite-dimensional.
- (b) Let *H* be a Hilbert space,  $H \neq \{0\}$  and  $T \in BL(H)$ . If *T* is self-adjoint, then show that  $m_T \in \sigma(T)$ , where  $m_T = \inf\{\lambda : \lambda \in W(T)\}$ .

OR

## Q-6 Attempt all Questions

- (a) Let *H* be a Hilbert space and  $T \in BL(H)$ . Prove that  $\sigma(T) = \sigma_a(T) \cup \{\overline{\mu} : \mu \in \sigma_e(T^*)\}.$
- (b) Let *H* be a Hilbert space. If  $T: H \to H$  is a compact linear map, then show that  $T \in BL(H)$ . Is the converse true? Justify.



(14)

(14)

(07)